Hornresp скачать на русском
Dating > Hornresp скачать на русском
Last updated
Dating > Hornresp скачать на русском
Last updated
Download links: → Hornresp скачать на русском → Hornresp скачать на русском
При выборе Sd параметры Тиэле-Смолла только показывает. Compare Îòîáðàæàåò òåêóùèé è ïðåäûäóùèé èëè çàõâà÷åíûé àêóñòè÷åñêèé èìïåäàíñ, SPL, ýëåêòðè÷åñêèé èìïåäàíñ, ñìåùåíèå äèàôðàãìû, Ô×Õ, ÃÇ, ÄÍ íà îäíîì ãðàôèêå. Предыдущие результаты используются в сравнениях по умолчанию. Òåêñò ðàñïîçíàë è äàëüøå ëåíü íå ðàçðåøèëà.
Сопротивление 8 Ом, выходное усилка 2 Ом. Notes 6 to 14 on pages 18 to 20 explain how to model a mass-loaded horn, an offset driver horn, a tapped horn, a compound horn, a back-loaded horn, a horn-loaded vented-box enclosure or a direct radiator in a vented-box enclosure, closed-box enclosure or infinite baffle. Use the Delay tool to specify a different value. Также конструктивно можно отмечать наличие или отсутствие,некоторые характеристики: Соединительной камеры throat chamber , Динамика loudspeaker driver , Вентилируемой или герметично закрытой задней камеры acoustically lined or vented rear chamber. Последний раз редактировалось U. Димитров теперь Харьков Добавлено: Пн Окт 04, 2004 9:06 am Заголовок сообщения: Тоже -так думаю, лучше ссылки писать, и права не нарушаем, и траффик жалеем, я например плачу за траффик, а не за время. To model a horn-loaded vented-box enclosure select the 'Rear Vented' option from the Chamber tool. Дваэжды кликаем по этому окошку, соглашаем с тем, что правильно ввели параметры Re и Cms. Paste Driver Pastes previously copied driver parameter values to the current record. Чтобы посмотреть или ввести сколько ЭТО будет в имперских в русском - колониальных единицах дюймах и футах , надо при фокусе на соответствующем окне нажать F6.
Çàïèñü äîëæíà áûòü áåç îøèáîê. The rear chamber volume is the effective enclosed air volume behind the driver diaphragm, including any space occupied by acoustical lining material but excluding port tube, driver magnet and chassis assemblies. Tal Толщина звукоизолирующего слоя задней камеры см.
Подборка (сборник) радиолюбительских программ присланных пользователями - Group delay is a measure of the rate of change of phase with respect to frequency, and is positive when the phase slope is negative.
Ñäåëàë ñóïåðêðàòêóþ èíñòðóêöèþ ïî ëàáèðèíòàì â õîðíðåñïå. Çàïóñêà¸ì è íàæèìàåì Add. Çàáèâàåì ïàðàìåðû êàê íà êàðòèíêå.  êðàñíîì òåëåñíûé óãîë , ïîäâîäèìîå íàïðÿæåíèå è ñîïðîòèâëåíèå èñòî÷íèêà.  ñèðåíåâîì ïàðàìåòðû êàíàëà.  ñèíåì ïàðàìåòðû ãîëîâêè. Ìîæíî ïîcìîòðåòü îáú¸ì,äëèíó è êîíôèãóðàöèþ êàíàëà. Äâèãàåì äâèæêàìè äî ïîëó÷åíèÿ æåëàåìîé ÿ÷õ. Ðóïîðà ìîãóò èìåòü - ñïëþñíóòûå ñôåðîèäàëüíûå âîëíîâîäû - ðóïîðà Le Cléach Ñàëüìîíîâî ñåìåéñòâî - ñ ñôåðè÷åñêèì âîëíîâûì ôðîíòîì - òðàêòðèññà - ýêñïîíåíöèàëüíûå - ãèïåðáîëè÷åñêèå - ïàðàáîëü÷åñêèå - êîíè÷åñêèå âïëîòü äî 4õ ðàçíûõ ñåãìåíòîâ, ñîåäèíåííûõ ïîñëåäîâàòåëüíî ñ ïðåäðóïîðíîé êàìåðîé è àêóñòè÷åñêè èçîëèðîâàííîé èëè âåíòèëèðóåìîé çàäíåé êàìåðîé. Ìîæíî ìîäåëèðîâàòü ðóïîðà ñ íåñêîëüêèìè äèíàìèêàìè èëè ìàññèâîì äèíàìèêîâ. Äèàôðàãìà äèíàìèêà ïðåäïîëàãàåòñÿ ïëîñêîé è æåñòêîé ïîðøíåâîé ðåæèì. Ïàðàìåòðû ñåãìåíòîâ ðóïîðà ìîãóò áûòü îáíóëåíû ââåäåíèåì ïóñòûõ çíà÷åíèé â ãðàôû ïëîùàäè ãîðëà, âûõëîïà, öåíòðàëüíîé äëèííû, ÷àñòîòû ñðåçà, òèïå ðàñøèðåíèÿ flare parameter èëè ïîëóóãëó ðàñêðûâà ðóïîðà. Äëÿ ìíîãîñåãìåíòíûõ ðóïîðîâ ÷åì áîëüøå âåëè÷èíà Cir âëèÿíèå ñêðóãëåíèÿ âûõëîïà ðóïîðà íà äëèííó âîëíû ÷àñòîòû ñðåçà mouth circumference in flare cutoff frequency wavelengths ïðåâûøàåò 1 äëÿ êàæäîãî ñåãìåíòà, òåì ìåíüøå òî÷íîñòü ñèìóëÿöèè. ×òîáû ïîñìîòðåòü èëè ââåñòè ñêîëüêî ÝÒÎ áóäåò â èìïåðñêèõ â ðóññêîì - êîëîíèàëüíûõ åäèíèöàõ äþéìàõ è ôóòàõ , íàäî ïðè ôîêóñå íà ñîîòâåòñòâóþùåì îêíå íàæàòü F6. Èòàê, ÷òî åñòü ÷òî íà ãëàâíîì îêíå èëè îêíå Âõîäíûõ ïàðàìåòðîâ: Ang òåëåñíûé óãîë, ìîæíî ââîäèòü çíà÷åíèÿ 4, 2, 1 èëè 0. Ìîæíî öèêëè÷åñêè ìåíÿòü äîñòóïíûå çíà÷åíèÿ äàáë-êëèêîì ìûøêè ïî íàäïèñè Ang. Ïîâòîðþñü: 4Ïè - ïîëíûé òåëåñíûé óãîë êîëîíêà âèñèò íà ïîäúåìíîì êðàíå âäàëåêå îò îòðàæàþùèõ ïîâåðõíîñòåé - ãäå-òî òàêèå èñïûòàíèÿ ïðîâîäèëè 2Ïè - ïîëóñôåðà, èëè êîëîíêà ñòîèò íà ïîëó âñå îñòàëüíûå îòðàæàþùèå ïîâåðõíîñòè - äàëåêî. Rg - Âûõîäíîå ñîïðîòèâëåíèå óñèëèòåëÿ. Fta - ïðè âñåõ îñòàëüíûõ Con Par íå çàâèñèò îò Ang, çàòî çàâèñèò îò ïàðàìåòðîâ âñåõ ñåêöèé ðóïîðà. L12 ìîæíî âûáðàòü èíûå òèïû ðàñøèðåíèÿ, íàæàâ H, L, O, S, T, äàííûå âèäû à íå âûáèðàþòñÿ ïî äàáë-êëèêó ìûøêè á ïðè èõ âûáîðå îñòàëüíûå ñåêöèè ñòàíîâÿòñÿ íåäîñòóïíû äëÿ ðåäàêòèðîâàíèÿ. Ïîïûòàþñü ñâîèìè ñëîâàìè ñêàçàòü, ÷òî çíà÷èò òèï ðàñøèðåíèÿ. C - Conical Êîíè÷åñêèé, ëèíåéíàÿ çàâèñèìîñòü P - Parabolic Ïàðàáîëè÷åñêèé â îáùåì, òîæå íè÷åãî ñëîæíîãî H - Hyperbolic Ãèïåðáîëè÷åñêèé ÷óòü ïîñëîæíåå E - Exponential Ýêñïîíåíöèàëüíûé ýòî ñîâñåì ïðîñòî T - Traktris Òðàêòðèñà ñïåöèàëüíàÿ àóäèî-êðèâàÿ, íå ñèëüíî îòëè÷àþùàÿñÿ îò ãèïåðáîëû L - Le Cleac'h íåïåðåâîäèìàÿ èãðà ñëîâ , O - Oblate spheroidal waveguide íåïåðåâîäèìàÿ èãðà ñëîâ , S - Spherical Wave Horn íåïåðåâîäèìàÿ èãðà ñëîâ. F12 Ïðè âûáîðå Exp, Hyp, Obl ïîÿâëÿåòñÿ âû÷èñëÿåìûé ïàðàìåòð F12 - ÷àñòîòà ñðåçà â äàííîì ñëó÷àå ïåðâîãî ñåãìåíòà, çàâèñèò îò ïëîùàäåé è äëèííû ñåãìåíòà. LeC, Sph F12 çàäàåòñÿ âðó÷íóþ, èç íåãî âû÷èñëÿþòñÿ â ñëó÷àå LeC äëèííà, â ñëó÷àå Sph - ïëîùàäü óñòüÿ. T Ïîÿâëÿåòñÿ ïðè âûáîðå Hyp LeC â õýëïå åùå ïèñàíî ïðî Exp, íî òàì îí AT è âû÷èñëÿåìûé - ââîäèìûé ïàðàìåòð ðàñøèðåíèÿ: 0 - catenoidal, 1 for sinh 99999. Rms Êîýôèöèýíò ìåõàíè÷åñêîãî äåìïôèðîâàíèÿ, ò. Le èíäóêòèâíîñòü çâóêîâîé êàòóøêè äðàéâåðà millihenrys Re ñîïðîòèâëåíèå ïîñòîÿííîìó òîêó çâóêîâîé êàòóøêè äðàéâåðà Îì Nd Êîëè÷åñòâî è ïîëîæåíèå äðàéâåðîâ. Êàæåòñÿ, ÷òî îí âñåãäà 1... Compound Horn - íåïåðåâîäèìàÿ èãðà ñëîâ âèäèìî îáîçíà÷àþùàÿ íåñêîëüêî ðóïîðîâ, èãðàþùèõ îò îäíîãî äðàéâåðà. VRC Îáúåì Çàäíåé êàìåðû ë íå êóá. È ïîõîæå, ÷òî ýòî - ñîïðîòèâëåíèå ÏÀÑ. Atc ïëîùàäü ïîïåðå÷íîãî ñå÷åíèÿ íîðìàëüíîãî ê îñè ïðåäðóïîðíîé êàìåðû êâ. Ìîæíî ïåðåìåùàÿ óêàçàòåëü ìûøè è óâèäåòü ãäå êàêèå ñîñòàâíûå ÷àñòè è èõ ìàñøòàá âèäèìî, äëÿ ðàçíûõ ÷àñòåé ðàçíûé. Íè÷åãî èíòåðàêòèâíîãî â äàííîì îêíå ìíå íàéòè íå óäàëîñü - òîëüêî îòîáðàæåíèå è ïîäïèñè. Ôàêòè÷åñêèå àêóñòè÷åñêîå è ðåàêòèâíîå ñîïðîòèâëåíèå ìîæíî îïðåäåëèòü ïóòåì óìíîæåíèÿ çíà÷åíèÿ íà äèàãðàììå íà äàííûé â øàïêå îêíà êîýôôèöèåíò ìàñøòàáèðîâàíèÿ. Óðîâåíü âûðàæàåòñÿ â äåöèáåëàõ ïî îòíîøåíèþ ê ñòàíäàðòíîìó çâóêîâîìó äàâëåíèþ 20 micropascals. Äà, ýëåêòðè÷åñêîå ñîïðîòèâëåíèå Îìàõ â çàâèñèìîñòè îò ÷àñòîòû â Ãåðöàõ. Ïîâåäåíèå íà âñåõ óðîâíÿõ âõîäíîãî íàïðÿæåíèÿ ïðåäïîëàãàåòñÿ ëèíåéíûì. Íåò ó÷åòà êîìïðåññèè àìïëèòóäû íà íèçêîé ÷àñòîòå. Ïðè èñïîëüçîâàíèè ãðóïïû äðàéâåðîâ, ñìåùåíèå êàæäîé äèàôðàãìû ñ÷èòàþòñÿ îäèíàêîâûìè è ðàâíûìè ðàññ÷åòíîé. Ïî óìîë÷àíèþ ôàçà êîððåêòèðóåòñÿ, äîáàâëÿÿ ëèíåéíîå ñìåùåíèå ôàçû, ýêâèâàëåíòíîå ñðåäíåìó çíà÷åíèþ ãðóïïîâîé çàäåðæêè ïî -12äÁ SPL. Ìèíóñ ïðîèçâîäíàÿ îò Ô×Õ, â çàâèñèìîñòè îò ÷àñòîòû â Ãåðöàõ. Ãðóïïîâàÿ çàäåðæêà ÿâëÿåòñÿ ìåðîé ñêîðîñòè èçìåíåíèÿ ôàçû ïî îòíîøåíèþ ê ÷àñòîòå, è ÿâëÿåòñÿ ïîëîæèòåëüíîé, êîãäà ó ôàçû íàêëîí îòðèöàòåëåí. Paste Driver ctrl-V Âñòàâëÿåò ðàíåå ñêîïèðîâàííûå çíà÷åíèÿ ïàðàìåòðîâ äðàéâåðà â òåêóùóþ çàïèñü. Find ctrl-F Íàéòè çàïèñè ïî êîììåíòàðèÿì.  îêíå 1 Input Parameters ìîæíî èñïîëüçîâàòü êëàâèøè Page Up, Page Down, Home, End è Enter äëÿ ïåðåõîäà îò îäíîé çàïèñè ê äðóãîé. Sort ctrl-S Ñîðòèðóåò çàïèñè ïî êîììåíòàðèÿì ïî âîçðàñòàíèþ â áóêâåííî-öèôðîâîì ïîðÿäêå. Import Èìïîðòèðóåò çíà÷åíèÿ âõîäíûõ ïàðàìåòðîâ èç ðàíåå ýêñïîðòèðîâàííîãî ôàéëà. Çàïèñü äîëæíà áûòü áåç îøèáîê. Åñëè âûáðàíî îêíî 2 schematic diagram, òî ñîõðàíÿåò ñõåìó â âèäå òåêñòà ñ ðàçäåëèòåëÿìè è òàáóëÿòîðàìè. Åñëè âûáðàíû îêíà ñ 3ãî ïî 8å, ò. SPL, Ô×Õ è Ýë. Èìïåäàíñ ìîãóò áûòü ýêñïîðòèðîâàíû îòäåëüíî äëÿ èñïîëüçîâàíèÿ ñ äðóãèì ÏÎ ðàçðàáîòêè ãðîìêîãîâîðèòåëåé. Øêàëà ÷àñòîòû ëîãàðèôìè÷åñêàÿ îò 10 äî 20000 Ãåðö. Äîñòóïíà âî âñåõ îêíàõ êðîìå îêíà çíà÷åíèé âõîäíûõ ïàðàìåòðîâ. Ïðè ýòîì ïå÷àòàþòñÿ âõîäíûå ïàðàìåòðû, ïîä íèìè - äàííûå èç òåêóùåãî îêíà. Àêòèâåí â îêíå 1 Input Parameters ïðè íàõîæäåíèè ôîêóñà íà îäíîì èç ïàðàìåòðîâ îäíîãî èç ñåãìåíòîâ âèäèìî, åãî ñåãìåíò è ñ÷èòàåò. Ïðè÷åì åñëè íå âûáðàí òèï, ñïðîñèò êàêîé òèï áóäåì ñ÷èòàòü, ïðè÷åì â ïîçèöèè 1ãî ñåãìåíòà âûäàåò âñå 8 âàðèàíòîâ, â 2-4ì ñåãìåíòàõ ïðåäëàãàåò âûáðàòü èç 3õ ñòûêóåìûõ Êîíè÷åñêèé, ïàðàáîëè÷åñêèé, ýêñïîíåíöèàëüíûé , ÷òî â îáùåì-òî ëîãè÷íî! Âû÷èñëÿåò îäíè ïàðàìåòðû èç äðóãèõ: ïëîùàäü ãîðëà, ïëîùàäü óñòüÿ, îñåâàÿ äëèíû, ÷àñòîòà ñðåçà, ïàðàìåòð êðèâèçíû, ïîëîâèííûé óãîë ðàñêðûòèÿ ãîðëà, çàêðóãëåíèå óñòüÿ, óãîë ðàñêðûâà óñòüÿ. Ìîæíî âû÷èñëèòü ïëîùàäü óñòüÿ èëè ÷àñòîòó ñðåçà ÷åðåç çàäàíèå Cir èëè FtA åñëè ñòîèò ñîîòâ. Ãàëî÷êó òîæå ìîæíî ïîñòàâèòü íå âñåãäà, à òîëüêî ïðè âû÷èñëåíèè ÷àñòîòû ñðåçà, òîãäà ñòàíîâèòñÿ íåàêòèâíà äëèíà. Calculate Parameter ctrl-U èëè äàáëêëèê íà âåëè÷èíå ïàðàìåòðà. Àêòèâíà êîãäà ôîêóñ íà îäíîì èç ïàðàìåòðîâ: Eg, Sd, Bl, Cms, Rms, Mmd, Lpt. Ïðè âûáîðå Sd ïàðàìåòðû Òèýëå-Ñìîëëà òîëüêî ïîêàçûâàåò. Íà ñàìîì äåëå ïðè äàáëêëèêå íà Lpt îòêðûâàåòñÿ ðàññ÷åò ÔÈ, íà Tal - íå÷òî ïîõîæåå, ÷òî ñ÷èòàåò - íå ïîíÿë. Äàáëêëèê íà Fr, Ap, Ap1 äåéñòâóåò åñëè ýòî - ïåðâîå äåéñòâèå ïîñëå âûáîðà ñîîòâåòñòâóþùåãî òèïà. Êàê ñèì ïîëüçîâàòüñÿ áóäåò ÿñíî âèäèìî èç ïðèìåðîâ. Driver Arrangement Îïðåäåëÿåò êîëè÷åñòâî è ðàñïîëîæåíèå äðàéâåðîâ. Ãðóïïîâîé èçëó÷àòåëü ãðóïïà äðàéâåðîâ ñîâìåñòíî èñïîëüçóåò ðóïîð, ïðåäðóïîðíóþ è çàäíþþ êàìåðû êàê îïðåäåëåíî âî âõîäíûõ ïàðàìåòðàõ è ïîêàçàíî íà äèàãðàììå. System Design Îïðåäåëÿåò îïòèìàëüíûé äèçàéí äëÿ ãèïåðáîëè÷åñêî-ýêñïîíåíöèàëüíîãî ðóïîðà, çàäàâàÿ ïàðàìåòðû äðàéâåðîâ, ñèñòåìû è äèàïàçîí ðàáî÷èõ ÷àñòîò. Àâòîìàòè÷åñêè ïåðåñ÷èòûâàåò ðåçóëüòàòû äëÿ âûáðàííîé ÀÑ â ðåæèìå ðåàëüíîãî âðåìåíè, êàê òîëüêî ìåíÿþòñÿ âõîäíûå ïàðàìåòðû. Âñåãî ìîæåò áûòü ñîõðàíåíî äî 4õ ãðóïï ïàðàìåòðîâ è ãðàôèêîâ. ×òîáû íåìåäëåííî ïîñìîòðåòü íà ñõåìó ÀÑ, íàäî íàæàòü S. ×òîáû èçìåíèòü ðàñêðûâ ðóïîðíûõ ñåãìåíòîâ, íàäî äàáëêëèêíóòü ïî ñòðî÷êå âûøå ïîëçóíêà êîíòðîëÿ äëèíû. Êîãäà ðàññ÷èòûâàåòñÿ SPL îäíîñåãìåíòíîãî ðóïîðà, òàêæå ïðîñ÷èòûâàåòñÿ 2ÿ ãàðìîíèêà. Ïðè äîñòèæåíèè ìàêñèìàëüíîãî çâóêîâîãî äàâëåíèÿ, îãðàíè÷åííîãî ìàêñ. Íàæìèòå F3 èëè äâàæäû ùåëêíèòå äèàãðàììó, ÷òîáû âûáðàòü. Compare Îòîáðàæàåò òåêóùèé è ïðåäûäóùèé èëè çàõâà÷åíûé àêóñòè÷åñêèé èìïåäàíñ, SPL, ýëåêòðè÷åñêèé èìïåäàíñ, ñìåùåíèå äèàôðàãìû, Ô×Õ, ÃÇ, ÄÍ íà îäíîì ãðàôèêå. Ïðåäûäóùèå ðåçóëüòàòû èñïîëüçóþòñÿ â ñðàâíåíèÿõ ïî óìîë÷àíèþ. ×òîáû çàõâàòèòü òåêóùèå ðåçóëüòàòû, íàæìèòå ñî÷åòàíèå êëàâèø Ctrl + C, èëè Ctrl + X äëÿ îñâîáîæäåíèÿ çàõâà÷åííûõ ðåçóëüòàòîâ. Ðåçóëüòàòû òàêæå ìîãóò áûòü çàõâà÷åíû èëè âûïóùåíû ùåëêíóâ ïðàâîé êíîïêîé ìûøè ëþáîé ãðàôèê. ×òîáû ïîêàçàòü èëè ñêðûòü ïðåäûäóùèå èëè çàõâà÷åíûå ðåçóëüòàòû, Íàæìèòå êëàâèøó F4. Äîñòóïíî äëÿ âûáîðà â îêíå ãðàôèêà SPL. Directivity Pattern ÄÍ2 Îòîáðàæåíèå äèàãðàììû íàïðàâëåííîñòè îäíîñåãìåíòíîãî ðóïîðà íà óêàçàííîé ÷àñòîòå. Ïîëÿðíàÿ äèàãðàììà ïîêàçûâàåò ïîëå çâóêîâîãî äàâëåíèÿ íà ôèêñèðîâàííîì ðàññòîÿíèè â çàâèñèìîñòè îò âíåîñåâîãî óãëà, âûðàæàåòñÿ ïî îòíîøåíèþ ê äàâëåíèþ íà îñè ìàêñèìàëüíîå çíà÷åíèå íîðìèðîâàííîé íà 1. Îòíîøåíèå ìîæåò áûòü óêàçàíî íåïîñðåäñòâåííî èëè â äåöèáåëàõ. Òàêæå äàíû íàïðàâëåíèÿ ïî îñè è ïî -6 äÁ. Íàæìèòå íà ïîëÿðíóþ äèàãðàììó, ÷òîáû ïîêàçàòü óðîâåíü äàâëåíèÿ íà çàäàííîì óãëå. Äîñòóïíî äëÿ âûáîðà â îêíå ãðàôèêà SPL. Directivity Beam Width Øèðèíà ëó÷à íàïðàâëåííîñòè. Îòîáðàæàåò óãëîâîå ðàññòîÿíèå â ãðàäóñàõ ìåæäó äâóìÿ òî÷êàìè ïî îáå ñòîðîíû îò ãëàâíîé îñè, ãäå çâóêîâîå äàâëåíèå íèæå íà 6 äåöèáåë îò åå çíà÷åíèÿ íà îñè, â çàâèñèìîñòè îò ÷àñòîòû â ãåðöàõ. Ïðèìåíèìî òîëüêî ê êîíå÷íûì îäíîñåãìåíòíîé ðóïîðàì. Ïðèìåíèìî òîëüêî ê êîíå÷íûì îäíîñåãìåíòíûì ðóïîðàì. Impulse Response Îòîáðàæàåò äàâëåíèå â çàâèñèìîñòè îò âðåìåíè ïðè èìïóëüñíîì âîçáóæäåíèè ÀÑ. Ïèêîâîå çíà÷åíèå àìïëèòóäû íîðìèðîâàíî íà 0,9. Âûáåðèòå èç îêíà ãðàôèêà SPL. Impulse Spectrogram Ñïåêòðîãðàììà Èìïóëüñà îòîáðàæàåò ñïåêòðàëüíóþ ïëîòíîñòü, íîðìàëèçîâàííóþ, â äåöèáåëàõ â çàâèñèìîñòè îò ÷àñòîòû, â çàâèñèìîñòè îò âðåìåíè â ìèëëèñåêóíäàõ. Maximum SPL Ìàêñèìàëüíûé óðîâåíü çâóêîâîãî äàâëåíèÿ. Îòîáðàæàåò ìàêñèìàëüíûé óðîâåíü çâóêîâîãî äàâëåíèÿ â äåöèáåëàõ, êîòîðûé ìîæåò áûòü äîñòèãíóò íà ðàññòîÿíèè 1 ìåòð, íå ïðåâûøàÿ íîìèíàëüíîé òåïëîâîé îãðàíè÷åííîé ýëåêòðè÷åñêîé ìîùíîñòè äðàéâåðà Pmax èëè ìàêñèìàëüíîãî ñìåùåíèÿ äèàôðàãìû Xmax, â çàâèñèìîñòè îò ÷àñòîòû â Ãåðöàõ. ×åðíûé óêàçûâàåò íà îãðàíè÷åíèå ïî ìîùíîñòè, êðàñíûé ïî ïåðåìåùåíèþ. Íàæìèòå ñî÷åòàíèå êëàâèø Ctrl + S, ÷òîáû íàâñåãäà ñîõðàíèòü ââåäåííûå Pmax è Xmax. Ýòî òîëüêî äëÿ ÷åòâåðòüâîëíîâûõ äåë è òîëüêî ñàìîå íà÷àëî. Ôè ê ñòàòè òàêèì ñïîñîáîì òîæå ñ÷èòàåòñÿ õîòÿ è ÷åðåç... Ñ ðåàëüíîñòüþ ïðàâäà íå ñâåðÿë. À èíñòðóêöèþ ÿ òîæå ïåðåâîäèë ïåðåâîäèë íî íå ïåðåâ¸ë. Òåêñò ðàñïîçíàë è äàëüøå ëåíü íå ðàçðåøèëà. Horns with multiple drivers and arrays of multiple loudspeakers can be modelled. The driver diaphragm is assumed to be a rigid plane piston. Horn segment parameter values can be reset to zero by entering a blank for the throat area, mouth area, axial length, flare cutoff frequency, flare parameter or throat entry half-angle. For multiple-segment horns, the more that the value of Cir mouth circumference in flare cutoff frequency wavelengths exceeds 1 for any horn segment, the less accurate the calculated throat acoustical impedance and other results become. After calculating results by pressing F5 or Calculate, press F2 to move to the next window, Shift+F2 to move to the previous window or Esc to return to the input parameters window from any result window. Notes 6 to 14 on pages 18 to 20 explain how to model a mass-loaded horn, an offset driver horn, a tapped horn, a compound horn, a back-loaded horn, a horn-loaded vented-box enclosure or a direct radiator in a vented-box enclosure, closed-box enclosure or infinite baffle. To enter a length, area or volume value in Imperial inch or foot units, press F6 in edit mode when the relevant input parameter has the focus. Ang Solid radiation angle steradians Enter 4, 2, 1 or 0. Eg Amplifier open circuit root-mean-square voltage volts Enter 0 for driver diaphragm constant rms velocity of 10 centimetres per second. Rg Amplifier output resistance ohms Cir Free space normalised horn mouth circumference in flare cutoff frequency wavelengths Fta Horn mouth flare tangent angle degrees -------------------------------------------------------------------------------- -------------------------------------------------------------------------------- HORNRESP HELP - INPUT PARAMETERS WINDOW Page 3 of 22 -------------------------------------------------------------------------------- S1 Horn segment 1 throat area sq cm S2 Horn segment 1 mouth area and horn segment 2 throat area sq cm L12 Horn segment 1 axial length cm To select Con, Exp or Par flare in edit mode, press C, E or P when the relevant horn segment length parameter has the focus or double-click the length label. To select Hyp, Lec, Obl, Sph or Tra flare in edit mode, press H, L, O, S or T when the L12 length parameter has the focus. F12 Horn segment 1 flare cutoff frequency hertz T Hyperbolic-exponential and Le Cleac'h horn flare parameter Enter 0 for catenoidal, 1 for sinh or 99999. AT Horn throat entry half-angle degrees S5 S4 S3 S2 THROAT S1 - - - - - - - - - - - - - - - - MOUTH L12 L23 L34 L45 -------------------------------------------------------------------------------- HORNRESP HELP - INPUT PARAMETERS WINDOW Page 4 of 22 -------------------------------------------------------------------------------- Sd Driver diaphragm piston area sq cm Bl Driver magnetic flux density x voice coil conductor length tesla. Le Driver voice coil inductance millihenrys Re Driver voice coil dc resistance ohms Nd Number and position of drivers in loudspeaker Specify driver system configuration using the Driver Arrangement tool. The design is assumed to be axisymmetric. Use the mouse pointer to identify component parts and show scale. Acoustical Impedance Horn throat acoustical resistance and reactance in normalised acoustical ohms versus frequency in hertz. The actual acoustical resistance and reactance can be determined by multiplying the chart values by the given scaling factor. SPL Response Sound pressure produced at a point source normalised distance of one metre when the driver is supplied with a signal of a given voltage, versus frequency in hertz. The level is expressed in decibels relative to the standard reference sound pressure of 20 micropascals. The default response assumes constant directivity. The Directivity Response tool can be used to take into account the frequency dependent directional characteristics of finite single-segment horns. Electrical Impedance Loudspeaker electrical input impedance magnitude in ohms versus frequency in hertz. The actual displacement can be determined by dividing the chart value by the scaling factor, where given. Behaviour at all input voltage levels is assumed to be linear. No allowance is made for low frequency high power amplitude compression. Each diaphragm in a multiple driver configuration has the same displacement, as given by the calculated value. Phase Response Phase-angle difference in degrees between voltage Eg and the output sound pressure of a loudspeaker system, versus frequency in hertz. By default, the phase is corrected by adding a linear phase offset equivalent to the mean group delay across the -12dB delimited SPL bandwidth. Use the Delay tool to specify a different value. Group Delay Negative derivative in milliseconds of the loudspeaker system phase response, versus frequency in hertz. Group delay is a measure of the rate of change of phase with respect to frequency, and is positive when the phase slope is negative. Paste Driver Pastes previously copied driver parameter values to the current record. Find Searches for records that match the given comment text and filter. The Page Up, Page Down, Home, End and Enter keys can also be used to move from one record to another, when the input parameters window is displayed. Sort Sorts records in comment-ascending alphanumeric order. Import Loads input parameter data values from an exported record file. Record must be valid. When selected from the schematic diagram window, saves schematic diagram data values to a tab- delimited text or comma separated values file. See also Notes 15 and 16 on pages 20 and 21. Axial length values for each horn segment increase linearly from zero to the segment length. The length increment for each segment can be set to a specified value in centimetres. When selected from a chart window, saves data values for all calculated charts to a tab-delimited text or comma separated values file. SPL and Ze magnitude and phase files can also be exported for use with other loudspeaker design software tools. Frequency values increase logarithmically from 10 to 20000 hertz. Print Prints the input parameter values and displayed schematic diagram or chart. Exit Closes the Hornresp application. Cir or Fta can be set to a specified value when the mouth area or flare cutoff frequency calculation option is selected. The Tools menu command is enabled when any horn segment parameter or the Ap1 throat adaptor parameter has the focus. The tool can also be selected by double-clicking the parameters in edit mode. The mouth area calculation option can be used to determine the cross-sectional area at any point along the axial length of a horn segment. For system volume, double-click segment volume. Calculate Parameter Derives Bl, Cms, Rms and Mmd values from relevant Thiele-Small parameters, calculates Eg given the power delivered to a specified load and determines Lpt given the Helmholtz resonance frequency. When selected from Sd, displays the driver Thiele-Small parameters. The Tools menu command is enabled when Eg, Sd, Bl, Cms, Rms, Mmd or Lpt has the focus. The tool can also be selected by double-clicking the parameters in edit mode. The Tools menu command is enabled when the input parameters window is in edit mode. The chamber configuration can also be selected by double-clicking the Fr, Tal, Ap, Ap1 or Lpt label. Multiple drivers share the horn system, throat chamber and rear chamber as defined by the input parameter values and as shown in the schematic diagram. An offset driver horn, a tapped horn or a compound horn can be specified. Select the tool by double-clicking the Nd, OD, TH, TH1 or CH disabled text box in edit mode. System Design Determines the optimum design for a hyperbolic- exponential horn loudspeaker given either the driver or system parameter values, and the required operating frequency range. Horn flare parameter T can be entered into the System Design With Driver tool as an optional input, by double-clicking the upper rolloff corner frequency label. The tool is applicable to single segment conical and parabolic horns, and all multiple segment horns. The initial slider control settings and chart results are saved as a reference baseline when the tool is selected. Up to four sets of values can be stored and recalled by clicking the appropriate memory button or pressing the equivalent function key. Press the S key to to instantly check the schematic diagram. To change the flare of a horn segment, double-click on the label above the length slider control. To change the frequency range, double-click on the chart frequency label. To directly set a slider control to a specified value, key in the value and then press Enter while the control has the focus. To reset a slider control to its baseline value, press B while the control has the focus. To reset all slider controls to their baseline values, press Ctrl+B. To save a new baseline with the current slider control settings and chart results, press Ctrl+Alt+B. View Schematic Displays the loudspeaker schematic diagram and system volume. When the SPL response of a single-segment horn is sampled, the second-harmonic distortion is also calculated. When the maximum SPL response is sampled, the acoustical output is shown as either power or displacement limited, and the input voltage and Pmax diaphragm displacement are given. Press F3 or double-click chart to select. Compare Displays the current and previous or captured acoustical impedance, SPL response, electrical impedance, diaphragm displacement, phase response, group delay or beam width results on the same chart. Previous results are used in comparisons by default. Press Ctrl+C to capture the current results or Ctrl+X to release captured results. Results can also be captured or released by right-clicking any chart. Press F4 to show or hide the previous or captured results. Select from the SPL response chart window. Directivity Pattern Displays the directional characteristics of a finite single-segment horn at a specified frequency. The polar diagram shows the far-field sound pressure at a fixed distance as a function of the off-axis angle, expressed relative to the on-axis pressure with the maximum value normalised to 1. The sound pressure ratio can be indicated directly or in decibels. The on-axis directivity index and -6 dB beam width are also given. Click on the polar diagram to show the pressure level at a specified angle. Select from the SPL response or beam width chart windows. Directivity Beam Width Displays the angular distance in degrees between the two points on either side of the principal axis of the directivity pattern where the sound pressure level is down 6 decibels from its value on axis, versus frequency in hertz. Only applicable to finite single-segment horns. Only applicable to finite single-segment horns. Impulse Response Displays the impulse pressure versus time response of a loudspeaker system. The peak amplitude value is normalised to 0. Select from the SPL response chart window. Click the Export button to save the impulse response data values to a wave sound file. Click the Compare or Clear button or press F4 to show or hide the comparison with the previous result. Impulse Spectrogram Displays the impulse spectral density, or normalised amplitude in decibels as a function of frequency, versus time in milliseconds. Maximum SPL Displays the maximum sound pressure level in decibels that can be achieved at 1 metre without exceeding the driver rated thermal limited electrical input power Pmax or the diaphragm linear mean-to-peak displacement limit Xmax, versus frequency in hertz. Black indicates power limited, red indicates displacement limited. Press Ctrl+S to permanently save the entered Pmax and Xmax values. Äàëüøå ïîêà íå ïåðåâåäåíî. Åñëè êòî õî÷åò ïîìî÷ü, íà÷èíàéòå ñ êîíöà -------------------------------------------------------------------------------- HORNRESP HELP - TOOLS MENU Page 15 of 22 -------------------------------------------------------------------------------- Combined Response For a finite back-loaded horn loudspeaker system, combines the direct radiator output with the default displayed horn SPL response. The direct radiator cannot be located inside the horn mouth. For a finite horn-loaded vented-box loudspeaker system, combines the port output with the default displayed horn SPL response. The port outlet cannot be located inside the horn mouth. For a direct radiator vented-box loudspeaker system, combines the port output with the default displayed direct radiator SPL response. The path length from the rear side of the driver diaphragm to the port outlet is assumed to be equal to Lrc plus Lpt, as shown in the schematic diagram. The distance from the port outlet to the listener can be adjusted if necessary using the path length difference parameter. A positive value for path length difference increases the listener distance. Destructive interference nulls are often not as deep as predicted, due to the directional characteristics of the front and rear radiated sound. Multiple Speakers Displays the normalised far-field SPL response of a given multiple loudspeaker array connected to a single amplifier. Not applicable to infinite horns. Click on the chart to show the efficiency value at a specified frequency. Sound Pressure Displays peak sound pressure in pascals versus frequency in hertz. Click on the chart to show the sound pressure value at a specified frequency. Particle Velocity Displays peak particle velocity in metres per second versus frequency in hertz. Click on the chart to show the particle velocity value at a specified frequency. Range When selected from the electrical impedance chart window, sets the electrical impedance chart range. Select Zoom to optimise the scale for the resonance peak. When selected from the group delay chart window, sets the group delay chart range. Delay Sets the phase response chart offset delay correction. Select zero delay to show standard wrapped phase. Isophase wavefronts are shown. Options Sets the throat chamber and rear chamber resonance masking and default result window options. The application assumes that the velocity of sound in air is 344 metres per second, and that the density of air is 1. The driver diaphragm is modelled as a rigid plane circular piston. No allowance is made for frequency-dependent directional characteristics due to driver cone angle or cone material, or for changes in moving mass, acoustical impedance or radiated power caused by diaphragm resonance modes. Also, horn flare directional characteristics are not taken into account when calculating the constant directivity SPL response. This means that the actual upper frequency rolloff for a cone type drive unit coupled to a straight-axis horn can in some cases be more than one octave higher than the predicted value. The constant directivity SPL response is also the acoustical power response. No provision is made for horn transmission losses. The rear chamber volume is the effective enclosed air volume behind the driver diaphragm, including any space occupied by acoustical lining material but excluding port tube, driver magnet and chassis assemblies. The throat chamber volume is the effective air volume between the driver diaphragm and the throat chamber port, the throat adaptor entry or the horn throat. The locations of the throat chamber and rear chamber are as shown in the schematic diagram. The driver entry point is at S2. Vtc and Atc can be used to specify a chamber between the diaphragm and the throat entry point. Ap1 and Lpt can be used to specify a port opening between the chamber and the horn not required if the cross- sectional area of the opening is equal to Atc. By default, with no rear chamber specified only the horn output is calculated. The Combined Response tool can be used to determine the rear output or the overall front plus rear SPL response. TH can be double- clicked to set the optional TH1 flag. Driver entry points are at S2 and S3 for a three segment TH horn, S2 and S4 for a four segment TH horn, and S2 and S3 for a four segment TH1 horn. Vtc and Atc can be used to specify a chamber between the diaphragm and the throat entry point. Ap1 and Lpt can be used to specify a port opening between the chamber and the horn not required if the cross-sectional area of the opening is equal to Atc. The Loudspeaker Wizard tool can be used to change the driver position without altering the horn length or flare. To model a compound horn select the compound horn option from the Driver Arrangement tool or double-click Nd, OD or TH in edit mode to set the CH flag. Horn 1 is specified using segment 1 plus segments 2 and 3 if required. Horn 2 is specified using segment 4. By default, only the horn 1 output is calculated. The Combined Response tool can be used to determine the horn 2 output or the overall horn 1 plus horn 2 SPL response. By default, only the horn output is calculated. The Combined Response tool can be used to determine the direct radiator output or the overall horn plus direct radiator SPL response. To model a horn-loaded vented-box enclosure select the 'Rear Vented' option from the Chamber tool. By default, only the horn output is calculated. The Combined Response tool can be used to determine the port output or the overall horn plus port output SPL response. By default, only the direct radiator output is calculated. The Combined Response tool can be used to determine the port output or the overall direct radiator plus port output SPL response. The 2007 flare profile used in the Le Cleac'h horn simulation model becomes slightly inaccurate near the horn mouth. The error is not large enough to make any practical difference to predicted results. For construction purposes the exact axisymmetric profile can be exported by selecting the appropriate option when prompted.